100 research outputs found

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback

    Informal Persian Universal Dependency Treebank

    Get PDF
    This paper presents the phonological, morphological, and syntactic distinctions between formal and informal Persian, showing that these two variants have fundamental differences that cannot be attributed solely to pronunciation discrepancies. Given that informal Persian exhibits particular characteristics, any computational model trained on formal Persian is unlikely to transfer well to informal Persian, necessitating the creation of dedicated treebanks for this variety. We thus detail the development of the open-source Informal Persian Universal Dependency Treebank, a new treebank annotated within the Universal Dependencies scheme. We then investigate the parsing of informal Persian by training two dependency parsers on existing formal treebanks and evaluating them on out-of-domain data, i.e. the development set of our informal treebank. Our results show that parsers experience a substantial performance drop when we move across the two domains, as they face more unknown tokens and structures and fail to generalize well. Furthermore, the dependency relations whose performance deteriorates the most represent the unique properties of the informal variant. The ultimate goal of this study that demonstrates a broader impact is to provide a stepping-stone to reveal the significance of informal variants of languages, which have been widely overlooked in natural language processing tools across languages. © European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Effect of a columnar defect on the shape of slow-combustion fronts

    Full text link
    We report experimental results for the behavior of slow-combustion fronts in the presence of a columnar defect with excess or reduced driving, and compare them with those of mean-field theory. We also compare them with simulation results for an analogous problem of driven flow of particles with hard-core repulsion (ASEP) and a single defect bond with a different hopping probability. The difference in the shape of the front profiles for excess vs. reduced driving in the defect, clearly demonstrates the existence of a KPZ-type of nonlinear term in the effective evolution equation for the slow-combustion fronts. We also find that slow-combustion fronts display a faceted form for large enough excess driving, and that there is a corresponding increase then in the average front speed. This increase in the average front speed disappears at a non-zero excess driving in agreement with the simulated behavior of the ASEP model.Comment: 7 pages, 7 figure

    Flux front penetration in disordered superconductors

    Full text link
    We investigate flux front penetration in a disordered type II superconductor by molecular dynamics (MD) simulations of interacting vortices and find scaling laws for the front position and the density profile. The scaling can be understood performing a coarse graining of the system and writing a disordered non-linear diffusion equation. Integrating numerically the equation, we observe a crossover from flat to fractal front penetration as the system parameters are varied. The value of the fractal dimension indicates that the invasion process is described by gradient percolation.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor

    Full text link
    The influence of geometry and morphology of superconducting structure on critical currents and magnetic flux trapping in percolative type-II superconductor is considered. The superconductor contains the clusters of a normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is examined thoroughly how the finite resolution capacity of the cluster geometrical size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are improved; more detailed version with geometric probability analisys of the distribution of entry points into weak links over the perimeter of a normal phase clusters and one additional figure is published in Phys.Rev.B; alternative e-mail of author is [email protected]
    corecore